
Fault Prediction OO Systems Using the
Conceptual Cohesion of Classes

Subba Rao Polamuri, S. Rama Sree, M.Rajababu

Dept of Computer Science and Engineering,

Aditya Engineering College
Surampalem, Kakinada, A.P, India

Abstract— High cohesion is desirable property in software
systems to achieve reusability and maintainability. In this
project we are measures for cohesion in Object-Oriented
(OO)[10] software reflect particular interpretations of
cohesion and capture different aspects of it. In existing
approaches the cohesion is calculate from the structural
information for example method attributes and references. In
conceptual cohesion of classes, i.e. in our project we are
calculating the unstructured information from the source code
such as comments and identifiers. Unstructured information is
embedded in the source code. To retrieve the unstructured
information from the source code Latent Semantic Indexing is
used. A large case study on three open source software systems
is presented which compares the new measure with an
extensive set of existing metrics and uses them to construct
models that predict software faults[9]. In our project we are
achieving the high cohesion and we are predicting the fault in
Object –Oriented Systems. This paper presents the principles
and the technology that stand behind the C3 measure. A large
case study on three open source software systems is presented
which compares the new measure with an extensive set of
existing metrics and uses them to construct models that
predict software faults.

Keywords—Latent Semantic Indexing, image Retrieval,
Cohesion, Coupling, fault Prediction.

I. INTRODUCTION

The Software modularization, Object-Oriented
(OO) decomposition in particular, is an approach for
improving the organization and comprehension of source
code. In order to understand OO software, software
engineers need to create a well-connected representation of
the classes that make up the system. Each class must be
understood individually and, then, relationships among
classes as well. One of the goals of the OO analysis and
design is to create a system where classes have high
cohesion and there is low coupling among them. These
class properties facilitate comprehension, testing,
reusability, maintainability, etc.
Software cohesion can be defined as a measure of the
degree to which elements of a module belong together [8].
Cohesion is also regarded from a conceptual point of view.
In this view, a cohesive module is a crisp abstraction of a
concept or feature from the problem domain, usually
described in the requirements or specifications. Such
definitions, although very intuitive, are quite vague and
make cohesion measurement a difficult task, leaving too
much room for interpretation. In OO software systems,
cohesion is usually measured at the class level and many
different OO cohesion metrics have been proposed which

try capturing different aspects of cohesion or reflect a
particular interpretation of cohesion.
Cohesion measures the semantic strength of relationships
between components within a functional unit. Coupling[4]
measures the strength of all relationships between
functional units.
Proposals of measures and metrics for cohesion abound in
the literature as software cohesion metrics proved to be
useful in different tasks including the assessment of design
quality [5][6] productivity, design, and reuse effort,
prediction of software quality, fault prediction,
modularization of software, and identification of reusable of
components.

Most approaches to cohesion measurement have
automation as one of their goals as it is impractical to
manually measure the cohesion of classes in large systems.
The tradeoff is that such measures deal with information
that can be automatically extracted from software and
analysed by automated tools and ignore less structured but
rich information from the software. Cohesion is usually
measured on structural information extracted solely from
the source code that captures the degree to which the
elements of a class belong together from a structural point
of view.

These measures give information about the way a
class is built and how its instances work together to address
the goals of their design. The principle behind this class of
metrics is to measure the coupling between the methods of
a class. Thus, they give no clues as to whether the class is
cohesive from a conceptual point of view (for example,
whether a class implements one or more domain concepts)
nor do they give an indication about the readability and
comprehensibility of the source code. Although other types
of metrics were proposed by researchers (see Section 2 for
details) to capture different aspects of cohesion, only a few
such metrics address the conceptual and textual aspects of
cohesion.

We propose a new measure for class cohesion,
named the Conceptual Cohesion of Classes (C3), which
captures the conceptual aspects of class cohesion, as it
measures how strongly the methods of a class relate to each
other conceptually. The conceptual relation between
methods is based on the principle of textual coherence. We
interpret the implementation of methods as elements of
discourse. There are many aspects of a discourse that
contribute to coherence, including coreference, causal
relationships, connectives, and signals. The source code is
far from a natural language and many aspects of natural
language discourse do not exist in the source code or need

Subba Rao Polamuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4684 - 4688

4684

to be redefined. The rules of discourse are also different
from the natural language.

C3 is based on the analysis of textual information
in the source code, expressed in comments and identifiers.
Once again, this part of the source code, although closer to
natural language, is still different from it. Thus, using
classic natural language processing methods, such as
propositional analysis, is impractical or unfeasible. Hence,
we use an Information Retrieval (IR) technique, namely,
Latent Semantic Indexing (LSI), to extract, represent, and
analyse the textual information from the source code. Our
measure of cohesion can be interpreted as a measure of the
textual coherence of a class within the context of the entire
system.

Cohesion ultimately affects the comprehensibility
of source code. For the source code to be easy to understand,
it has to have a clear implementation logic (that is, design)
and it has to be easy to read (that is, good language use).
These two properties are captured by the structural and
conceptual cohesion metrics, respectively.

This paper is organized as follows: An overview of other
cohesion metrics for OO systems is presented in Section 2,
emphasizing the type of information used in the
computation of the metrics and the measuring mechanisms.
Section 3 describes the principles and technology behind
the C3 metric and formally defines the metric, giving an
example as well. Section 4 presents two case studies aimed
at comparing C3 with an extensive set of existing cohesion
measures and assessing its ability to predict faults in the
source code, in combination with the existing metrics.

II. RELATED WORK

A. Lack of Cohesion in Methods

Cohesion is an important concept in OO programming. It
indicates whether a class represents a single abstraction or
multiple abstractions. The idea is that if a class represents
more than one abstraction, it should be refactored into more
than one class, each of which represents a single abstraction.

Despite its importance, it is difficult to establish a clear
mechanism for measuring it. This is probably due to the
fact that good abstractions have deep semantics and a class
that is clearly cohesive when viewed from a semantic point
of view may not be so when viewed from a purely symbolic
point of view. As an aside, the somewhat inelegant name is
due to the wish to have lower metric values representing a
'better' situation. I have selected four definitions of lack of
cohesion. That of Chidamber and Kemerer, Henderson and
Sellers and two proposed in this paper. Chidamber and
Kemerer define Lack of Cohesion in Methods as the
number of pairs of methods in a class that don't have at least
one field in common minus the number of pairs of methods
in the class that do share at least one field. When this value
is negative, the metric value is set to 0.

Henderson-sellers Lack of Cohesion in Methods as
follows. Let M be the of methods defined by the class, f be
the set of fields defined by the class, r(f) be the number of
methods that access fields f, where f is a member of F.

Lack of Cohesion in Methods= (<r> - |M|)/(1 - |M|)
 This definition of Lack of Cohesion use Watanabe's

generalization of mutual information known as Total
Correlation, which determines if a group of variables

exhibit redundancy or structure .Its application to the
measurement of cohesion is simple. Each method in a class
makes use of a subset of the fields of the class. We want to
know whether the way these subsets exhibit some structure
between the fields. If such a structure exists then it can be
extracted into one or more other classes in order to remove
or reduce the structure. We may therefore consider the use
of each field by the methods as a 'random' binary variable
with a certain probability of occurrence.

The rest follows naturally from the definition of Total
Correlation. Although removal of structure would normally
be considered a bad thing in software, the ideal cohesive
scenario of 'all fields used by all methods' exhibits no
structure in field usage. Pairwise Field Irrelation: Let: M be
set of methods defined by the class, F be the set of fields
defined by the class, Mf be the subset of M of methods that
access field f, where f is a member of F. Then, the Total
Field Irrelation is the mean Jaccard Distance between Mf1
and Mf2, where f1 ≠ f2.Note 1: I have only included methods
in M if they access at least one field.

The reason for this is that methods that do not access
fields are often required to be non-static for reasons of
polymorphic dispatch. However, these kinds of methods
skew the value of this metric in a way that is not helpful.
Which methods are related? Methods a and b are related if:
they both access the same class-level variable, or a calls b,
or b calls a. After determining the related methods, we draw
a graph linking the related methods to each other. LCOM4
equals the number of connected groups of methods.

 LCOM4=1 indicates a cohesive class, which is the
"good" class.

 LCOM4>=2 indicates a problem. The class should
be split into so many smaller classes.

 LCOM4=0 happens when there are no methods in
a class. This is also a "bad" class.

The example on the left shows a
class consisting of methods A
through E and variables x and y.
A calls B and B accesses x. Both
C and D access y. D calls E, but
E doesn't access any variables.
This class consists of 2 unrelated
components (LCOM4=2). You
could split it as {A, B, x} and
{C, D, E, y}.

In the example on the right,
we made C access x to
increase cohesion.

Now the class consists of a
single component
(LCOM4=1). It is a cohesive
class.

B. Cohesion Measures for OO Software Systems

There are several different approaches to measure cohesion
OO systems. Many of the existing metrics are adapted from

Subba Rao Polamuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4684 - 4688

4685

similar cohesion measures for non-OO systems (we are not
discussing those here), while some of the metrics are
specific to OO software. Based on the underlying
information used to measure the cohesion of a class, one
can distinguish structural metrics [8],semantic metrics [33],
information entropy-based metrics [1], slice-based metrics],
metrics based on data mining and metrics for specific types
of applications like knowledge-based aspect-oriented, and
distributed systems. The class of structural metrics is the
most investigated category of cohesion metrics and includes
lack of cohesion in methods (LCOM),1LCOM3,LCOM4,
Co (connectivity) LCOM5, Coh, TCC (tight class cohesion)
[8], LCC (loose class cohesion) [8], ICH (information-
flow-based cohesion), NHD (normalized Hamming
distance) etc. The dominating philosophy behind this
category of metrics considers class variable referencing and
data sharing between methods as contributing to the degree
to which the methods of a class belong together. Most
structural metrics define and measure relationships among
the methods of a class based on this principle. Cohesion is
seen to be dependent on the number of pairs of methods
that share instance or class variables one way or another.
The differences among the structural metrics are based on
the definition of the relationships among methods, system
representation, and counting mechanism. A comprehensive
overview of graph theory-based cohesion metrics
Somewhat different in this class of metrics are LCOM5 and
Coh, which consider that cohesion is directly proportional
to the number of instance variables in a class that are
referenced by the methods in that class. Briand et al.
defined a unified framework for cohesion measurement in
OO systems which classifies and discusses all of these
metrics. Recently, other structural cohesion metrics have
been proposed, trying to improve existing metrics by
considering the effects of dependent instance variables
whose values are computed from other instance variables in
the class. Other recent approaches have addressed class
cohesion by considering the relationships between the
attributes and methods of a class based on dependence
analysis. Although different from each other, all of these
structural metrics capture the same aspects of cohesion,
which relate to the data flow between the methods of a
class. This measure is based on a vector representation of
the frequencies of occurrences of data types in a module.
The approach measures the cohesion of individual
subprograms of a system based on the relationships to each
other in this vector space. Maletic and Marcus defined a
file-level cohesion metric based on the same type of
information that we are using for our proposed metrics here.
Even though these metrics were not specifically designed
for the measurement of cohesion in OO software, they
could be extended to measure cohesion in OO systems.

III. AN INCREMENTAL RETRIVEAL APPROACH TO CLASS

COHESION MEASUREMENT

OO analysis and design methods decompose the problem
addressed by the software system development into classes
in an attempt to control complexity. High cohesion for
classes and low coupling among classes are design
principles aimed at reducing the system complexity. The
most desirable type of cohesion for a class is model

cohesion such that the class implements a single
semantically meaningful concept. This is the type of
cohesion that we are trying to measure in our approach.

The source code of a software system contains
unstructured and (semi)structured data. The structured data
is destined primarily for the parsers, while the unstructured
information is destined primarily to the human reader. Our
approach is based on the premise that the unstructured
information embedded in the source code reflects, to a
reasonable degree, the concepts of the problem and solution
domains of the software, as well as the computational logic
of the source code. This information captures the domain
semantics of the software and adds a new layer of semantic
information to the source code, in addition to the
programming language semantics. Existing work on
concept and feature location traceability link recovery
between the source code and documentation [3] impact
analysis [2], and other such tasks showed that our premise
stands and this type of information extracted from the
source code is very useful.

A. Overview of Latent Semantic Indexing

LSI is a corpus-based statistical method for inducing
and representing aspects of the meanings of words and
passages (of the natural language) reflective of their usage
in large bodies of text. LSI is based on a vector space model
(VSM) as it generates a real-valued vector description for
documents of text. Results have shown [7], that LSI
captures significant portions of the meaning not only of
individual words but also of whole passages, such as
sentences, paragraphs, and short essays. The central concept
of LSI is that the information about the contexts in which a
particular word appears or does not appear provides a set of
mutual constraints that determines the similarity of meaning
of sets of words to each other.

LSI was originally developed in the context of IR
as a way of overcoming problems with polysemy and
synonymy that occurred with VSM approaches. Some
words appear in the same contexts and an important part of
word usage patterns is blurred by accidental and inessential
information. The method used by LSI to capture the
essential semantic information is dimension reduction,
selecting the most important dimensions from a co-
occurrence matrix (words by context) decomposed using
singular value decomposition (SVD) . As a result, LSI
offers a way of assessing semantic similarity between any
two samples of text in an automatic unsupervised way.

Once the documents are represented in the LSI subspace,
the user can compute similarity measures between
documents by the cosine between their corresponding
vectors or by their length. These measures can be used for
clustering similar documents together to identify “concepts”
and “topics” in the corpus. This type of usage is typical for
text analysis tasks. Uses of LSI in software engineering are
presented and discussed in our previous work.

B. From Textual Coherence to Software Cohesion

We adapt the LSI-based coherence measurement
mechanism to measure cohesion in OO software. One issue
is the definition of documents in the corpus. For a natural
language, sentences, paragraphs, and even sections are used
as units of text to be indexed (that is, documents). Based on

Subba Rao Polamuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4684 - 4688

4686

our previous experience we consider methods as elements
of the source code that can be units for indexing. Thus, the
implementation of each method is converted to a document
in the corpus to be indexed by LSI. The following steps are
necessary to compute the C3 metric
. Corpus creation. The source code is preprocessed and
parsed to produce a text corpus. Comments and identifiers
from each method are extracted and processed. A document
in the corpus is created for each method in every class.
. Corpus indexing. LSI is used to index the corpus and
create an equivalent semantic space.
. Computing conceptual similarities. Conceptual similarities
are computed between each pair of methods.

. Computing C3. Based on the conceptual similarity
measures, C3 is computed for each class.

IRC3Mis implemented as an MS Visual Studio .NET
add_in and computes the C3 metric for C++ software
projects in Visual Studio based on the above methodology.
Our source code parser component is based on the Visual
C++ Object Extensibility Model. Using project information
retrieved from Visual Studio .NET, the tool retrieves parts
of the source code that are used to produce a corpus. For
software projects that are developed outside the .NET
environment, that is, Mozilla from our case study, we use
external parsers and a set of our own utilities to construct
the corpus. The extracted comments and identifiers are
processed in a similar fashion as in what we used in
previous work, that is, by the elimination of stop words and
splitting identifiers that follow predefined coding standards.
We use the cosine between vectors in the LSI space to
compute conceptual relations. A Java version of the tool is
being developed as an Eclipse plug-in

C. The Conceptual Cohesion of Classes

In order to define and compute the C3 metric, we
introduce a graph-based system representation similar to
those used to compute other cohesion metrics.
We consider an OO system as a set of classes C (c1; c2 . . .
cn). The total number of classes in the system C is n = |C|.
A class has a set of methods. For each class c 2 C, M(C) =
(m1; . . .;mk) is the set of methods of class c.
An OO system C is represented as a set of connected graphs
GC =(G1; . . . ;Gn), withGi representing class ci. Each class
ci 2 C is represented by a graph Gi € GC such that
Gi=(Vi;Ei), whereVi = M(ci) is a set of vertices
corresponding to the methods in class ci, and Ei VixVi
is a set of weighted edges that connect pairs of methods
from the class.
Definition 1 (Conceptual Similarity between Methods
(CSM)). For every class ci 2 C, all of the edges in Ei are
weighted. For each edge (mk,mj) €Ei, we define the weight
of that edge CSM(mk,mj) as the conceptual similarity
between the methods mk and mj.

The conceptual similarity between two methods mk and
mj, that is, CSM(mk;mj), is computed as the cosine
between the vectors corresponding to mk and mj in the
semantic space constructed by the IR method (in this case
LSI):

where vmk and vmj are the vectors corresponding to the
mk;mj 2 M(ci) methods, T denotes the transpose, and
jvmkj2 is the length of the vector.
 For each class c € C, we have a maximum of N = C2

n
distinct edges between different nodes, where n= |M(c)|.
 With this system representation, we define a set of
measures that approximate the cohesion of a class in an OO
software system by measuring the degree to which the
methods in a class are related conceptually.
Defintion 2 (Average Conceptual Similarity of Methods in
a class (ACSM)). The ACSM c 2 C is

 (2)
Table 1 Conceptual Similarities between the Methods in the
MySecMan Class

where (mi;mj) € E, i ≠ j, mi;mj €M(c), and N is the number
of distinct edges in G, as defined in Definition 1.

In our view, ACSM(c) defines the degree to which
methods of a class belong together conceptually and, thus,
it can be used as a basis for computing the C3.
Definition 3 (C3). For a class c 2 C, the conceptual
cohesion of c, C3(c) is defined as follows:

 (3)
Based on the above definitions, C3ðcÞ 2 ½0; 1_8 c 2 C. If a
class c 2 C is cohesive, then C3(c) should be closer to one
meaning that all methods in the class are strongly related
conceptually with each other (that is, theCSMfor each pair
of methods is close to one). In this case, the class most
likely implements a single concept or a very small group of
related concepts (related in the context of the software
system).
Table 2: Partial Co-Occurrence Matrix For The Mysecman
Class.

If the methods inside the class have low conceptual

similarity values among each other (CSM close to or less
than zero), then the methods most likely participate in the
implementation of different concepts and C3ðcÞ will be
close to zero.

IV. ASSESSMENT OF THE NEW COHESION MEASURE

Newly proposed metrics require empirical evaluations.
We present the results of two case studies aimed at
comparing and combining C3 with a set of existing
cohesion measures. Sections 4.1 and 4.2 describe the
objectives and the design of the case studies. In the

Subba Rao Polamuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4684 - 4688

4687

subsequent sections, quantitative results are presented and
explained for each case study separately.

A. Conceptual Versus Structural Cohesion

It is after all possible to have a class with high internal,
syntactic cohesion but little semantic cohesion. To gain
more insight into how our metric differs from some of the
structural ones, we manually analyzed classes from Mozilla
and WinMerge for which the structural and conceptual
metrics disagree.

V. LIMITATIONS AND FUTURE WORK

 The C3 metric depends on reasonable naming conventions
for identifiers and relevant comments contained in the
source code. When these are missing, the only hope for
measuring any aspects of cohesion rests on the structural
metrics.
 In addition, methods such as constructors, destructors,
and accessory may artificially increase or decrease the
cohesion of a class. Although we did not exclude them in
the results presented here, our method may be extended to
exclude them from the computation of the cohesion by
using approaches for identifying types of method
stereotypes.

VI. CONCLUSIONS

Classes in object-oriented systems, written in different
programming languages, contain identifiers and comments
which reflect concepts from the domain of the software
system. This information can be used to measure the
cohesion of software. To extract this information for
cohesion measurement, Latent Semantic Indexing can be
used in a manner similar to measuring the coherence of
natural language text.

ACKNOWLEDGMENT

The authors are extremely grateful to the anonymous
reviewers for their very pertinent and helpful comments and
suggestions, which helped in significantly improving the
earlier version of this paper. Software tools are used in the
production of the results presented here.

REFERENCES
[1] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen,measuring Coupling

and Cohesion of Software Modules: An Information-Theory
Approach,” Proc. Seventh IEEE Int’l Software Metrics Symp.,pp.
124-134, Apr. 2001

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying
the Starting Impact Set of a Maintenance and Reengineering,” Proc.
Fourth European Conf. Software Maintenance, pp. 227-230, 2000.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documentation,”
IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct. 2002.

[4] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic Coupling
Measurement for Object-Oriented Software,” IEEE Trans. Software
Eng., vol. 30, no. 8, pp. 491-506, Aug. 2004.

[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment,” IEEE Trans. Software Eng.,
vol. 28, no. 1, pp. 4-17, Jan. 2002.

[6] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996

[7] M.W. Berry, “Large Scale Singular Value Computations,” Int’l J.
Supercomputer Applications, vol. 6, pp. 13-49, 1992.

[8] J. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-
Oriented System,” Proc. Symp. Software Reusability, pp. 259-262,
Apr. 1995.

[9] L. Briand, W. Melo, and J. Wust, “Assessing the Applicability of
Fault-Proneness Models Across Object-Oriented Software Projects,”
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720, July 2002.

[10] L.C. Briand, J.W. Daly, V. Porter, and J. Wu¨ st, “A Comprehensive
Empirical Validation of Design Measures for Object-Oriented
Systems,” Proc. Fifth IEEE Int’l Software Metrics Symp., pp. 43-53,
Nov. 1998.

Subba Rao Polamuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4684 - 4688

4688

